If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15a^2+10a=0
a = 15; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·15·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*15}=\frac{-20}{30} =-2/3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*15}=\frac{0}{30} =0 $
| 2x+7/6=7/2 | | 12/18=8/y+10 | | 42+4x+10=10x-2 | | -x/9=25 | | 9x-5+2x+4=34 | | -5=1/3x-6 | | −2.8x−2.1=−7.14 | | 2+∣5+4x∣= 1111 | | -10=11y/13 | | 2x+5·(x–1)=6+4·(x–2) | | 5-4x-5x=-22 | | .15(x-13)=7 | | 22x+8=2 | | 5b=27+8(b-3) | | 6+12.2y=1.7y+11 | | 7-(2x+5)=-2 | | 3w-6.6=8.4 | | 9c=6+5(c+2) | | 12=y/4+10 | | 9c=6+1(c+2) | | 2+((9-x)4)=10 | | -5y-7/2=5/4y-4/3 | | 5x-1=2x-28 | | 2(t+6)=5t+15 | | 5h+14=9h-5 | | 9x-7=-5x+91 | | n–2+–6.9=–11.16 | | -2|x+7|+3=19 | | k+1.993=2.94 | | 1=14x-1 | | -b=2-4(b+8) | | 5x-3=11x-(6x-4) |